The Unitary Representations of the Generalized Lorentz Groups

نویسنده

  • E. A. THIELEKER
چکیده

For n > 2, let G(n) denote the two-fold covering group of SO.(l,n). Incase n > 3, G(n) is isomorphic to Spin(l, n) and is simply connected. In a previous paper we determined all the irreducible quasi-simple representations of these groups, up to infinitesimal equivalence. The main purpose of the present paper is to determine which of these representations are unitarizable. Thus, with the aid of some results of Harish-Chandra and Nelson we determine all the irreducible unitary representations of G(n), up to unitary equivalence. One by-product of our analysis is the explicit construction of the infinitesimal equivalences, which are known to exist from our previous work, between the various subquotient representations and certain subrepresentations in the nonirreducible cases of the nonunitary principal series representations of G(ri).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On local gamma factors for orthogonal groups and unitary groups

‎In this paper‎, ‎we find a relation between the proportionality factors which arise from the functional equations of two families of local Rankin-Selberg convolutions for‎ ‎irreducible admissible representations of orthogonal groups‎, ‎or unitary groups‎. ‎One family is that of local integrals of the doubling method‎, ‎and the other family is‎ ‎that of local integrals expressed in terms of sph...

متن کامل

Some bounds on unitary duals of classical groups‎ - ‎non-archimeden case

‎We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups‎. ‎Roughly‎, ‎they can show up only if the‎ ‎central character of the inducing irreducible cuspidal representation is dominated by the‎ ‎square root of the modular character of the minimal parabolic subgroup‎. ‎For unitarizable subquotients...

متن کامل

0 v 1 1 J un 2 00 5 Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups

We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra ”dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...

متن کامل

/ 05 06 01 0 v 3 2 6 A ug 2 00 5 Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups

We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra “dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...

متن کامل

/ 05 06 01 0 v 2 2 0 Ju n 20 05 Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups Murat

We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra “dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010